If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8^2=(x)(x+x)
We move all terms to the left:
8^2-((x)(x+x))=0
We add all the numbers together, and all the variables
-(x(+2x))+8^2=0
We add all the numbers together, and all the variables
-(x(+2x))+64=0
We calculate terms in parentheses: -(x(+2x)), so:a = -2; b = 0; c = +64;
x(+2x)
We multiply parentheses
2x^2
Back to the equation:
-(2x^2)
Δ = b2-4ac
Δ = 02-4·(-2)·64
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{2}}{2*-2}=\frac{0-16\sqrt{2}}{-4} =-\frac{16\sqrt{2}}{-4} =-\frac{4\sqrt{2}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{2}}{2*-2}=\frac{0+16\sqrt{2}}{-4} =\frac{16\sqrt{2}}{-4} =\frac{4\sqrt{2}}{-1} $
| 7p=-3p+10 | | 6/16=45/x | | 4x^2+16x-600=0 | | 82=48x | | 82=58x | | Q=-3p+10 | | 2x^2-32=10 | | 24^3=w+2×w×3 | | 5w^2=-8w | | 0.2x-0.03=6.17x+0.21 | | 5x÷6=-1 | | -1=5x÷6 | | 2x+8=(x-5)*8 | | 7y−5=2y+35 | | -5t^2+7t+1=0 | | -62/3m=11/9 | | 4+2p+6=0 | | 8x=26+6x | | x−15=14 | | 5t^2=12t+9 | | 1/2(3x+3/4)=3/4 | | 6x-5(-8x)=22 | | 18=-2(m-6) | | 0.05y+.10(500-y)=0.20y | | x+8=−9 | | -2(b+5=12 | | (x+3)^2=18 | | -3x-5(-3x)=6 | | 24x-3=36 | | 2(x-3=22 | | 0.5x-1.2=0.4x+3.3 | | 3x-3x+4+3x=3+9-4x+6x |